A mortar mimetic finite difference method on non-matching grids
نویسندگان
چکیده
منابع مشابه
A mortar mimetic finite difference method on non-matching grids
We consider mimetic finite difference approximations to second order elliptic problems on non-matching multi-block grids. Mortar finite elements are employed on the non-matching interfaces to impose weak continuity of the velocity. Optimal convergence and, for certain cases, superconvergence is established for both the scalar variable and the velocity.
متن کاملA Non-mortar Mixed Finite Element Method for Elliptic Problems on Non-matching Multiblock Grids 1
We consider the approximation of second order elliptic equations on domains that can be described as a union of sub-domains or blocks. We assume that a grid is deened on each block independently, so that the resulting grid over the entire domain need not be conforming (i.e., match) across the block boundaries. Several techniques have been developed to approximate elliptic equations on multibloc...
متن کاملInterior superconvergence in mortar and non-mortar mixed finite element methods on non-matching grids
We establish interior velocity superconvergence estimates for mixed finite element approximations of second order elliptic problems on non-matching rectangular and quadrilateral grids. Both mortar and non-mortar methods for imposing the interface conditions are considered. In both cases it is shown that a discrete L2-error in the velocity in a compactly contained subdomain away from the interfa...
متن کاملA Mortar Mixed Finite Volume Method for Elliptic Problems on Non-matching Multi-block Triangular Grids
This article presents a mixed finite volume method for solving second-order elliptic equations with Neumann boundary conditions. The computational domains can be decomposed into non-overlapping sub-domains or blocks and the diffusion tensors may be discontinuous across the sub-domain boundaries. We define a conforming triangular partition on each sub-domains independently, and employ the standa...
متن کاملA Non-mortar Mixed Finite Element Method for Elliptic Problems on Non-matching Multiblock Grids a Non-mortar Mixed Finite Element Method for Elliptic Problems on Non-matching Multiblock Grids 1
We consider the approximation of second order elliptic equations on domains that can be described as a union of sub-domains or blocks. We assume that a grid is deened on each block independently, so that the resulting grid over the entire domain need not be conforming (i.e., match) across the block boundaries. Several techniques have been developed to approximate elliptic equations on multibloc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2005
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-005-0631-4